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Flexoelectricity and elasticity of asymmetric biomembranes
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In view of the well-established charge and dipolar asymmetry of the two leaflets of a native membrane, the
theory of flexoelectricityand curvature elasticifyis extended to take into account this asymmetry using linear
and nonlinear forms of the Poisson-Boltzmann equation. The results are discussed with respect to data from
atomic force microscopy studies of electromotility in biomembranes.
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INTRODUCTION 9P
PS:f P(z,c+)dz=J {PO(Z)-%E c,+-|dz
The theory of flexoelectricity has been developed and *lo
tested with symmetric lipid bilayeidl,2]. Recent flexoelec- IP(z,c.)
tric models of electromotility in outer hair cells of the co- =Pg+ fT dz|c, +---,
chlea[3] and atomic force microscogAFM) measurements o
in native membranggt,5] call for an extension of this theory o o
to the asymmetric situation. It is well established that thel-€-» in view of definition(1),
composition of outer and inner leaflets are asymmégic
To more fully understand the mechanics, the curvature elas- . fw dP(z,.cy) 3
ticity also needs to be generalized. —» dcg 0
FLEXOELECTRICITY Now, consider a membrar(&ig. 1) with an average sur-

face charge density of the outénnen monolayer ofo°(o"),

Flexoglectricity Is & mechanoelectric phenomenon knovVrlequivalent to a mean degree of ionization per lipid head of
from liquid crystal physics. In the case of a membrane, flexo- (8, the sign of being determined by the sign of

0
electricity refers to the curvature-dependent membrane p°|a(€i:ﬁie/A{), e is the proton chargé); is the area per lipid

ization|1,2], head in theflat state of the outer monolayer. For conve-
Ps=f(c,+Cy), (1)  hience, all surface charges are lumpedfh The two mem-
brane surfaces can be bathed by different ionic strength elec-
wherePg is the electric polarization per unit area in C/og,  trolytes, with corresponding Debye lengtkis (AD). Let the
andc, are the two principal radii of membrane curvature in
m~%, andf is the area flexoelectric coefficient in @ou-
lombs, typically a few units of electron charge. This effect is
manifested in membrane structures where an overall curva-
ture is related to splay deformation of the membrane mol-
ecules(lipids, proteing (cf. [2]). Across a polarized mem-
brane, a potential difference develops according to the
Helmholtz equation. Its curvature-dependent part is

AU:P5/80:(f/80)(C1+Cz). (2)

By measuring simultaneously this potential difference and
the curvature, one can determine the flexoelectric coefficient
of a given membrane.

A general expression for the flexoelectric coefficignt
expresses it as an integral of the curvature derivative of the
distribution of membrane polarization along the membrane
normal (c, =c;+c, is the total membrane curvatureA
Taylor expansion of the total polarization with respect to
total curvature is

FIG. 1. Cartoon of a curved asymmetric bilayer membrane and
its electric potential distribution. Double layére., chargeAV¢")
and dipole AV3') components of the surface potential of each
monolayer are indicated\ U is flexoelectric voltage, which is pro-
*On leave from the Institute of Solid State Physics, Bulgarianportional to the membrane curvature Rp/(see text b° andb' are
Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Buke distances between the mechanically neutral surface of the bi-
garia. layer and the corresponding aqueous interface.
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mean normal component of permanent dipole moment peexpressed via the mean value of both surface potential de-
lipid (polarized water hydration shell includete u° (') rivatives (which can be evaluated from lipid monolayers
(dipoles are regarded as positive if pointing inward towardwith matching composition, at their isoelectric points

the hydrophobic cope Finally, assume that both monolayers

have different thickness® (b') (strictly speakingp® andb' fDB_ _, A d[davy N dAVyg @

are the distances between the neutral mechanical surface of 800y | Tga dA /-

the bilayer and the corresponding membrane interface, Fig.

1). In Fig. 1 the double layefi.e., chargeAV%') and dipole ~ TO complete the dipolar case, we should note that for free
(AVS') components of the surface potential are indicated. IrfiPid €xchange, the corresponding Expression 1 obtained
general, both potentials can be lumped into onar° from Eq. (5) by replacingb®' with 6%', the corresponding

ZAVOi 4 Avg,i The surfacéVolta) potential AV is an ex- distance from an interface to the neutral surface of its own
s .

perimentally measurable quantity in monolayers on water/aiffonolayeri2]. As expected from loss of the constraint, the

or, more representative for half a membrane, on a water/oly@lue of the flexocoefficient is less than that from blocked
interface. exchange.

Dipolar contribution Charge contribution

Assume for convenience that polarizations &fanctions Calculations of the various charge contributi¢g$ make
peaked at the corresponding interfadé®., for dipoles & distinction between detailed electric neutra(gyfixed sto-
P(z,c.)=Pi(c,)8(z+Db') — PY(c. ) 8(z—b°) ’ Py ichiometry of blocked exchange where each half-space re-

mains neutral upon curving the membraaad global elec-

— ,,0i 0,i . :
p>'IAg", where the direction outward from the center of tric neutrality (unblocked exchange where the two half-

. . 0,i
curvature is regarded as positlvé®©bserve thadPg'/dc. spaces become oppositely charged

= (dPg'/dA™")(dA>'/dc, ). Finally, apply a first-order re- " jnger the detailed electric neutrality conditidim the
lationship for parallel surfacef], expressing the fact that |imjt of a linearized Poisson-Boltzmann equatidhe charge
the outer(innen interface is expandedcompressedupon  contribution is easily obtained from E¢p) by replacing the
curving the bilayer permanent din|€$L°’i by the effective diffuse double layer
Ao,i:Ag,i(libo,iC+)_ () dipoles ,8°~ie)\g"/sw, _Where £,=30 is the dielectric cooin—
stant of water in the double layer and\p

The result for the dipolar flexocoefficient in the case of = VeyeokT/26?n°" are the Debye screening lengths of the
fixed stoichiometry of each interface, i.e., blocked lipid ex-outer (innen 1:1 electrolytes. With lipids having negative
change(which in elastic terms means that the membranesurface charges, double layer dipoles are antiparallel to the
bends as a whole around its common neutral suffapewill permanent ones, which is reflected in the negative sign of the
then be mean partial charge per lipi@. Recalling that double layer
dipoles are centered at distanegg /2 further away from the

fDB_ ﬁi__ d_:“«' bi+ M_o_ d_MO bo ) corresponding interfaces, we get from E§),

Ay dA Aj dA° ' , _ ,

0 0 e (B dB|\ . [ . \p

fCB:_ A )\I bl + =

where the derivatives are taken with respect tofthiemem- ey ( Ap dA o D 2

brane state.
Another form offP can be obtained as follows: Express e [B° dp° o[ po AD
the potential difference across the membrane via the alge- S oy Ap| b™+ 7. ®)
w 0 0

braic sum of the two surface potentials. Furthermore, expand

these in a series with respect to the total curvature. Finally, On the other hand, proceeding as per E&j.we get
apply the relationsdAV®'/dc,. =(dAV®'/dA)(dA/dc,),

Egs.(4) and(2), dVi( A dVv®° AS
| fB= — 6ol A it bl + = +A* 5o b+ ]| ©
05— o A IEVE | pgpod2V (6)
01 70% gal 0% da° - This time representatiof®) is more general than E¢8),

since it also holds in the nonlinear ca&ee below. For

Equations(5) and(6) are identical in view of the Helmholtz |ipids that are both charged and dipolar, it is convenient to
equationAV'=P2'/eg=u%'1eoAg" (AVy is the surface express the sum of two contributions to the flexocoefficient
potential of a dipolar lipid monolayer, an experimentally via the sum of the two components to the surface potential.
measurable quantity Equation(6) may also be generalized For the special case used for E@) and for Debye lengths
for other components of the surface potential, where eacbufficiently shorter than a half the membrane thickness we
area derivative is to be multiplied by the corresponding discan write a simple expression,
tance to the neutral surface. ,

In the special cas@&,=AJ, b'=b°=d/2, whered is the £CB, fDB_ d (@/_'+ dAVO)
bilayer thickness, the dipolar flexocoefficient is conveniently dA dA°

=- SOAOE 9)
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Let us now discuss the global neutrality case. The astained from the balance of elastic and flexoelectric torques
sumption implies that by curving the membrane, the effec{2]
tive displacement of electric charges takes place across the
whole membrane thicknesg.g., an excess of negative K(citcp)=fE, (15
charges over the expanded outer surface and deficiency ove
the gompressed mngr surface, equivalent to an excessypo hereE is the transmembrane field andis the curvature
tive charge. This will result in a large electric dipole situated
in a low polar medium £,), and, consequently, the
curvature-induced voltage difference will be large. The result

is again obtainable from Ed5), this time by replacing the
. o X ; expressed via integrals across the membrane of the lateral
permanent dipole momentg"® with the effective dipole
stress distributiors(z,c ) and its derivatives. In particular

moments of the surface charges with respect to the bilayerfg]
neutral surface— 8'°eb"°/¢, . We shall denote the corre-
sponding flexoelectric coefficient dy! (monopole in order

elast|C|ty modulus. This equation calls for an expressiold of
for asymmetric membranes.

In general, curvature elasticity theory is similar to flexo-
electricity, in the sense that various elastic moduli can be

Js
to distinguish it from the case of detailed electric neutrality, K=f (z—2z9) fdz, (16)
+
i i o (o]
FMB — £ Er_d_ﬁr (bi)z_i 'B_O_d_ﬂo (b°)2. where z4 is the position of the neutral surface. Since the
e | Ap dAY, Ag dA%[ hydrophobic core contribution ti§ is more or less the same

(10)  regardless the membrane asymmegly we shall discuss the

electric contribution(charge or dipolgin more details.
The component of the flexocoefficient due to free charges 1 \ya5 shown earlief10] that the electric contribution to

is titratable from the bathing electrolyte, while the dipolar o cyrvature elastic modulus of a monolayer is given by
one is not. In the case of high surface charge/low ionic

strength, the surface potential of a charged monolayer is P 2
given by a solution of the nonlinear Poisson-Boltzmann KM=ggo(AV)? +b+ 5 17
equation
whereAV is either the dipole or charg&olta) potential,p is
AV =Earcsinh g (11) either the length of dipole or the Debye lengghis eithere
e 2\nee02kT ' oreg,,, andbis the distance between the innermost surface of
. _ . the charges and the dividing surfaghe mechanically neu-
Recalling thato'°= B8"°e/A5°, we obtain tral surface in our cage
Since contributions from both monolayers are additive,
dAV. e\p 1 d /(B one can write for a bilayer of dipolar lipids
AA  £uto \[11 (of2ynegegakn)? SA LA 2
(l2vneyeo2kT) (12 KPB= g eo(AVH)2 +b'+ o] FeLea(AVe)?
Then, in the limit of smallb- one can recover from E¢9) p° b°2
the result(8). On the other hand, for highr one gets X §+b°+ — . (18)
p
dave 2kTA d '3 13 F bil f ch d lipid ivel
dA _T,Eﬂ (13 or a bilayer of charged lipids, respectively,
A bi2
and consequently K CB— Swso(AVc) —+b' +egeg(AVO)2
D
i I
fCB: 2kT80 dA, (ﬁ|>(b _’_?D) )\% 02
e A X| = +ho+ —5|. (19)
AO :80 0
b°+ . (14 .
,30 dAO A° 2 In case of both dipolar and charged components of the

surface potential, the sum of Eq4.8) and (19) determines
In this limit the flexocoefficient is only weakly sensitive the electric component of the bending stiffness. Again, the
to the surface charge density, sincd/g&)(dg/dA) charged site is titratable from the bathing electrolyte, while
=dIn g/dA Apart from that, if one(or both of the Debye the dipolar one is not.
lengths diverge because®— 0, so will the flexocoefficient.

DISCUSSION

CURVATURE ELASTICITY .
Figure 2 demonstrates the dependence of the total flexo-

For a flaccid membranéwith zero tensioh the voltage- coefficient on the charge and ionic strength asymmetry. For
induced membrane curvatuteonverse flexo effegtis ob-  convenience, it is expressed in terms of the direct flexoeffect,
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Curvature(2d/R)

log;,C(M)

1.5
Partial Charge 5

Partial Charge

10g;,C(M) . . .
" FIG. 4. Electrically induced curvature of a membrane with no

FIG. 2. The flexoelectric voltagéEq. (2), in mV) across an  constraints[From Eq.(15) multiplied byd, K(c;+c,)d=f Edor,
asymmetric membrane patch with a curvature radasl um. f 2d/R=fU/K]. The ordinate is in dimensionless units af/R and
=P8+ £CB js employed, withf®® from Eq. (5) and f°® from Eq. U=E d=100 mV. The ratidf/K is from Figs. 2 and 3 and the other
(9). Parameters used=4, b°=6 nm, Ay=0.6, A3=0.8 nnt, u' parameters as per Fig. 2.
=1.5x10"%, u°=1x10"%° Cm, du'°/dA=dB"YdA=0, e,
=30, g, =2; partial charge per head inside was kept fixegdat and Steven Kieffer for technical assistance. This work was
=—0.5, while outside it was varied from-2.0 to O; the ionic  supported in part by grants from the NIH and the Japan Sci-
strength inside was kept fixed at 0.1 M 1:1 electrolyte, while out-ence and Technology International Collaborative Project on

side it was varied from 1M to 1 M. Mechanical Transduction to F.S.
i.e., the voltage generated across a membrane witim ta-
dius of curvature(as typically of a membrane patch in a APPENDIX

pipette. Figure 3 shows the curvature elastic modulus under
the same charge conditions, while Fig. 4 refers to the rati%e

f/IK, i.e., to the voltage-induced membrane curvatioen- " : _ P

. unnel[11,12 (where at each poirt; + ¢c,=0), and the tip is
verse fle_xoeffe()_tac_cordmg to Eq(15). We can see t_hat by .covered by a spherical cap olf3 radiliasarid heighth (Fig. 2).
d_ecre_asmg the lonic strength of_o_ne b_ath, the orlg_lnal pOSII:’roducing a logarithmic funnel shape does not cost any cur-
tive sign of the dipole ﬂgxocoefﬂment is re_versed, in corre- e energy(apart from the rim matching a finite funnel
spondence to the data in R¢&]. An analysis of the flexo- portion indentatior(H) depth to the planar membrafl];

electric moti_lity of membranes measured b_y AFM is given inthis term is exponentially small with the indentatibi, and
Fhe Appendix. The expected nanometer dlsplacem(_ants_ of atis flexoelectrically insensitive. The only part of the mem-
indented membrane surface, E44), are presented in Fig.

Assume that the indentation of an osmotically balanced
Il by the AFM tip produces a shape like a logarithmic

brane that produces an elastic restoring force is then the
5. . . . ._spherical segment closing the tip of the funnel; its total en-
In conclusion, an asymmetric flexoelectric membrane d's'ergy is
plays a rich variety of direct and converse flexoeffects. These
properties may have important implications for understand- 1 (22
ing the high-frequency motility observed in outer hair cells W= —K(—) 27Rh. (A1)
of the cochled3,13. 2 \R
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AR(nm)

K(KT)
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1.3 0.05

o - log, . C(M
Un(V) P o8

Partial Charge

10g,,C(M) FIG. 5. DisplacemenfAR, Eq. (A4)] of a membrane indented

with an AFM tip having a curvature radil®=100 nm, as a func-

FIG. 3. Total curvature elasticit¢ = KP2+ KB [Eq.(18) + Eq.  tion of membrane voltagé-100—-100 mV and ionic strength. The

(19), in KT units| with p'=p°=0.5nm and all other parameters as outer partial charge per lipid was fixed@it= — 1; other parameters
per Fig. 2. as above.
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Furthermore, in the presence of a transmembrane field
E=U,/d, the electrical enthalpy contair($o first ordey,
the flexoelectric term- 2 fE/R which will modify the radius
with respect to the zero-field case. The energy balance now
reads

2

htAhy=| K[ 2
ath+Ah =171 RTAR

X (h+Ah),

27(R+AR)

_R+A4
(A3)

FIG. 6. Cross section of an indented membrane with a spherical

cap on a rod approximating an AFM tip.

Taking the derivative with respect tg one gets the force
resultant that opposes an increasengh<H),

dw 4zK

TR (A2)

By increasing the tip load from O tpthe curvature radius
will thus gradually decrease from down to the AFM tip
radius R, (ca. 50 nm. For K=1x10"18 J this requires a
load of ~250 pN.

where Ah=AR and R is the curvature in the absence of
field. For weak fields (4fE<q) this yields (in view of
(A2)

AR_47TfE_R f

R~ q dKk°m™

(Ad)

This predicts that the electromotility response decreases
with the mean applied force because the membrane bending
becomes energetically costly at small radii. This property
may help to distinguish effects due to membrane torque from
that due to membrane tension.
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