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Flexoelectricity and elasticity of asymmetric biomembranes
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~Received 6 July 2001; published 17 January 2002!

In view of the well-established charge and dipolar asymmetry of the two leaflets of a native membrane, the
theory of flexoelectricity~and curvature elasticity! is extended to take into account this asymmetry using linear
and nonlinear forms of the Poisson-Boltzmann equation. The results are discussed with respect to data from
atomic force microscopy studies of electromotility in biomembranes.
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INTRODUCTION

The theory of flexoelectricity has been developed a
tested with symmetric lipid bilayers@1,2#. Recent flexoelec-
tric models of electromotility in outer hair cells of the co
chlea@3# and atomic force microscopy~AFM! measurements
in native membranes@4,5# call for an extension of this theor
to the asymmetric situation. It is well established that
composition of outer and inner leaflets are asymmetric@6#.
To more fully understand the mechanics, the curvature e
ticity also needs to be generalized.

FLEXOELECTRICITY

Flexoelectricity is a mechanoelectric phenomenon kno
from liquid crystal physics. In the case of a membrane, fle
electricity refers to the curvature-dependent membrane po
ization @1,2#,

PS5 f ~c11c2!, ~1!

wherePS is the electric polarization per unit area in C/m,c1
andc2 are the two principal radii of membrane curvature
m21, and f is the area flexoelectric coefficient in C~cou-
lombs!, typically a few units of electron charge. This effect
manifested in membrane structures where an overall cu
ture is related to splay deformation of the membrane m
ecules~lipids, proteins! ~cf. @2#!. Across a polarized mem
brane, a potential difference develops according to
Helmholtz equation. Its curvature-dependent part is

DU5PS /«05~ f /«0!~c11c2!. ~2!

By measuring simultaneously this potential difference a
the curvature, one can determine the flexoelectric coeffic
of a given membrane.

A general expression for the flexoelectric coefficient@7#
expresses it as an integral of the curvature derivative of
distribution of membrane polarization along the membra
normal ~c15c11c2 is the total membrane curvature!. A
Taylor expansion of the total polarization with respect
total curvature is
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PS5E P~z,c1!dz5E FP0~z!1
]P

]c1
U

0

c11¯Gdz

5PS
01F E ]P~z,c1!

]c1
U

0

dzGc11¯,

i.e., in view of definition~1!,

f 5E
2`

` dP~z,c1!

dc1
U

0

dz. ~3!

Now, consider a membrane~Fig. 1! with an average sur-
face charge density of the outer~inner! monolayer ofso(s i),
equivalent to a mean degree of ionization per lipid head
bo ~b i , the sign ofb being determined by the sign ofs!.
s i5b ie/A0

i , e is the proton charge,A0
i is the area per lipid

head in theflat state of the outer monolayer. For conv
nience, all surface charges are lumped inso. The two mem-
brane surfaces can be bathed by different ionic strength e
trolytes, with corresponding Debye lengthslD

i (lD
o ). Let the

ul-

FIG. 1. Cartoon of a curved asymmetric bilayer membrane
its electric potential distribution. Double layer~i.e., charge,DVc

o,i!
and dipole (DVd

o,i) components of the surface potential of ea
monolayer are indicated.DU is flexoelectric voltage, which is pro
portional to the membrane curvature (2/R) ~see text! bo andbi are
the distances between the mechanically neutral surface of the
layer and the corresponding aqueous interface.
©2002 The American Physical Society05-1
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mean normal component of permanent dipole moment
lipid ~polarized water hydration shell included! be mo (m i)
~dipoles are regarded as positive if pointing inward towa
the hydrophobic core!. Finally, assume that both monolaye
have different thicknessbo (bi) ~strictly speaking,bo andbi

are the distances between the neutral mechanical surfac
the bilayer and the corresponding membrane interface, F
1!. In Fig. 1 the double layer~i.e., charge,DVc

o,i! and dipole
(DVd

o,i) components of the surface potential are indicated
general, both potentials can be lumped into one:DVo,i

5DVc
o,i1DVd

o,i . The surface~Volta! potentialDV is an ex-
perimentally measurable quantity in monolayers on water
or, more representative for half a membrane, on a wate
interface.

Dipolar contribution

Assume for convenience that polarizations ared functions
peaked at the corresponding interfaces@i.e., for dipoles
P(z,c1)5PS

i (c1)d(z1bi)2PS
o(c1)d(z2bo), PS

o,i

5mo,i /A0
o,i , where the direction outward from the center

curvature is regarded as positive#. Observe thatdPS
o,i /dc1

5(dPS
o,i /dAo,i)(dAo,i /dc1). Finally, apply a first-order re-

lationship for parallel surfaces@8#, expressing the fact tha
the outer~inner! interface is expanded~compressed! upon
curving the bilayer

Ao,i5A0
o,i~16bo,ic1!. ~4!

The result for the dipolar flexocoefficient in the case
fixed stoichiometry of each interface, i.e., blocked lipid e
change~which in elastic terms means that the membra
bends as a whole around its common neutral surface@2#! will
then be

f DB5S m i

A0
i 2

dm i

dAiU
0
D bi1S mo

A0
o2

dmo

dAoU
0
D bo, ~5!

where the derivatives are taken with respect to theflat mem-
brane state.

Another form of f DB can be obtained as follows: Expre
the potential difference across the membrane via the a
braic sum of the two surface potentials. Furthermore, exp
these in a series with respect to the total curvature. Fina
apply the relationsdDVo,i /dc15(dDVo,i /dA)(dA/dc1),
Eqs.~4! and ~2!,

f DB52«0S A0
i bi

dDVd
i

dAi 1A0
obo

dDVd
o

dAo D . ~6!

Equations~5! and~6! are identical in view of the Helmholtz
equationDVd

o,i5PS
o,i /«05mo,i /«0A0

o,i ~DVd is the surface
potential of a dipolar lipid monolayer, an experimenta
measurable quantity!. Equation~6! may also be generalize
for other components of the surface potential, where e
area derivative is to be multiplied by the corresponding d
tance to the neutral surface.

In the special caseA0
i 5A0

o , bi5bo5d/2, whered is the
bilayer thickness, the dipolar flexocoefficient is convenien
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expressed via the mean value of both surface potential
rivatives ~which can be evaluated from lipid monolaye
with matching composition, at their isoelectric points!

f DB52«0A0

d

2 S dDVd
i

dA
1

dDVd
o

dA D . ~7!

To complete the dipolar case, we should note that for f
lipid exchange, the corresponding expression is obtai
from Eq. ~5! by replacingbo,i with dH

o,i , the corresponding
distance from an interface to the neutral surface of its o
monolayer@2#. As expected from loss of the constraint, th
value of the flexocoefficient is less than that from block
exchange.

Charge contribution

Calculations of the various charge contributions@2# make
a distinction between detailed electric neutrality~a fixed sto-
ichiometry of blocked exchange where each half-space
mains neutral upon curving the membrane! and global elec-
tric neutrality ~unblocked exchange where the two ha
spaces become oppositely charged!.

Under the detailed electric neutrality condition~in the
limit of a linearized Poisson-Boltzmann equation! the charge
contribution is easily obtained from Eq.~5! by replacing the
permanent dipolesmo,i by the effective diffuse double laye
dipoles bo,ielD

o,i /«w , where «w>30 is the dielectric con-
stant of water in the double layer andlD

o,i

5A«w«0kT/2e2no,i are the Debye screening lengths of t
outer ~inner! 1:1 electrolytes. With lipids having negativ
surface charges, double layer dipoles are antiparallel to
permanent ones, which is reflected in the negative sign of
mean partial charge per lipidb. Recalling that double laye
dipoles are centered at distanceslD

o,i /2 further away from the
corresponding interfaces, we get from Eq.~5!,

f CB5
e

«w
S b i

A0
i 2

db i

dAiU
0
D lD

i S bi1
lD

i

2 D
1

e

«w
S bo

A0
o2

dbo

dAoU
0
D lD

o S bo1
lD

o

2 D . ~8!

On the other hand, proceeding as per Eq.~6! we get

f CB52«0FAi
dVc

i

dAi S bi1
lD

i

2 D 1A0
dVc

0

dA0 S bo1
lD

o

2 D G . ~9!

This time representation~9! is more general than Eq.~8!,
since it also holds in the nonlinear case~see below!. For
lipids that are both charged and dipolar, it is convenient
express the sum of two contributions to the flexocoeffici
via the sum of the two components to the surface poten
For the special case used for Eq.~7! and for Debye lengths
sufficiently shorter than a half the membrane thickness
can write a simple expression,

f CB1 f DB52«0A0

d

2 S dDVi

dAi 1
dDVo

dAo D . ~98!
5-2
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Let us now discuss the global neutrality case. The
sumption implies that by curving the membrane, the eff
tive displacement of electric charges takes place across
whole membrane thickness~e.g., an excess of negativ
charges over the expanded outer surface and deficiency
the compressed inner surface, equivalent to an excess
tive charge!. This will result in a large electric dipole situate
in a low polar medium («L), and, consequently, th
curvature-induced voltage difference will be large. The res
is again obtainable from Eq.~5!, this time by replacing the
permanent dipole momentsm i ,o with the effective dipole
moments of the surface charges with respect to the bilay
neutral surface:2b i ,oebi ,o/«L . We shall denote the corre
sponding flexoelectric coefficient byf M ~monopole! in order
to distinguish it from the case of detailed electric neutral

f MB52
e

«L
S b i

A0
i 2

db i

dAiU
0
D ~bi !22

e

«L
S bo

A0
o2

dbo

dAoU
0
D ~bo!2.

~10!

The component of the flexocoefficient due to free char
is titratable from the bathing electrolyte, while the dipol
one is not. In the case of high surface charge/low io
strength, the surface potential of a charged monolaye
given by a solution of the nonlinear Poisson-Boltzma
equation

DVc5
2kT

e
arcsinhS s

2An«w«02kT
D . ~11!

Recalling thats i ,o5b i ,oe/A0
i ,o , we obtain

dDVc

dA
5

elD

«w«0

1

A11~s/2An«w«02kT!2

d

dA
S b

A
D .

~12!

Then, in the limit of smalls one can recover from Eq.~9!
the result~8!. On the other hand, for highs one gets

dDVc

dA
5

2kT

e

A

b

d

dA S b

AD , ~13!

and consequently

f CB52
2kT«0

e FAi

b i

d

dAi S b i

Ai D S bi1
lD

i

2 D
1

Ao

bo

d

dAo S bo

AoD S bo1
lD

o

2 D G . ~14!

In this limit the flexocoefficient is only weakly sensitiv
to the surface charge density, since (I /b)(db/dA)
5d ln b/dA. Apart from that, if one~or both! of the Debye
lengths diverge becauseni ,o→0, so will the flexocoefficient.

CURVATURE ELASTICITY

For a flaccid membrane~with zero tension! the voltage-
induced membrane curvature~converse flexo effect! is ob-
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tained from the balance of elastic and flexoelectric torq
@2#

K~c11c2!5 f E, ~15!

whereE is the transmembrane field andK is the curvature
elasticity modulus. This equation calls for an expression oK
for asymmetric membranes.

In general, curvature elasticity theory is similar to flex
electricity, in the sense that various elastic moduli can
expressed via integrals across the membrane of the la
stress distributions(z,c1) and its derivatives. In particula
@9#,

K5E ~z2z0!
]s

]c1
dz, ~16!

where z0 is the position of the neutral surface. Since t
hydrophobic core contribution toK is more or less the sam
regardless the membrane asymmetry@2#, we shall discuss the
electric contribution~charge or dipole! in more details.

It was shown earlier@10# that the electric contribution to
the curvature elastic modulus of a monolayer is given by

Km5««0~DV!2S p

3
1b1

b2

p D . ~17!

whereDV is either the dipole or charge~Volta! potential,p is
either the length of dipole or the Debye length,« is either«L
or «w , andb is the distance between the innermost surface
the charges and the dividing surface~the mechanically neu-
tral surface in our case!.

Since contributions from both monolayers are additiv
one can write for a bilayer of dipolar lipids

KDB5«L«0~DVd
i !2S pi

3
1bi1

bi 2

pi D 1«L«0~DVd
o!2

3S po

3
1bo1

bo2

po D . ~18!

For a bilayer of charged lipids, respectively,

KCB5«w«0~DVc
i !2S lD

i

3
1bi1

bi 2

lD
i D 1«w«0~DVc

o!2

3S lD
o

3
1bo1

bo2

lD
o D . ~19!

In case of both dipolar and charged components of
surface potential, the sum of Eqs.~18! and ~19! determines
the electric component of the bending stiffness. Again,
charged site is titratable from the bathing electrolyte, wh
the dipolar one is not.

DISCUSSION

Figure 2 demonstrates the dependence of the total fle
coefficient on the charge and ionic strength asymmetry.
convenience, it is expressed in terms of the direct flexoeff
5-3
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i.e., the voltage generated across a membrane with 1mm ra-
dius of curvature~as typically of a membrane patch in
pipette!. Figure 3 shows the curvature elastic modulus un
the same charge conditions, while Fig. 4 refers to the r
f /K, i.e., to the voltage-induced membrane curvature~con-
verse flexoeffect! according to Eq.~15!. We can see that by
decreasing the ionic strength of one bath, the original p
tive sign of the dipole flexocoefficient is reversed, in cor
spondence to the data in Ref.@5#. An analysis of the flexo-
electric motility of membranes measured by AFM is given
the Appendix. The expected nanometer displacements o
indented membrane surface, Eq.~A4!, are presented in Fig
5.

In conclusion, an asymmetric flexoelectric membrane d
plays a rich variety of direct and converse flexoeffects. Th
properties may have important implications for understa
ing the high-frequency motility observed in outer hair ce
of the cochlea@3,13#.
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FIG. 2. The flexoelectric voltage~Eq. ~2!, in mV! across an
asymmetric membrane patch with a curvature radiusR51 mm. f
5 f DB1 f CB is employed, withf DB from Eq. ~5! and f CB from Eq.
~9!. Parameters used:bi54, bo56 nm, A0

i 50.6, A0
o50.8 nm2, m i

51.5310230, mo51310230 Cm, dm i ,o/dA5db i ,0/dA50, «w

530, «L52; partial charge per head inside was kept fixed atb i

520.5, while outside it was varied from22.0 to 0; the ionic
strength inside was kept fixed at 0.1 M 1:1 electrolyte, while o
side it was varied from 10mM to 1 M.

FIG. 3. Total curvature elasticityK5KDB1KCB @Eq. ~18! 1 Eq.
~19!, in kT units# with pi5po50.5 nm and all other parameters a
per Fig. 2.
02190
r
io

i-
-

an

-
e
-

l

and Steven Kieffer for technical assistance. This work w
supported in part by grants from the NIH and the Japan S
ence and Technology International Collaborative Project
Mechanical Transduction to F.S.

APPENDIX

Assume that the indentation of an osmotically balanc
cell by the AFM tip produces a shape like a logarithm
funnel@11,12# ~where at each pointc11c250!, and the tip is
covered by a spherical cap of radiusR and heighth ~Fig. 6!.
Producing a logarithmic funnel shape does not cost any
vature energy~apart from the rim matching a finite funne
portion indentation~H! depth to the planar membrane@11#;
this term is exponentially small with the indentationH!, and
it is flexoelectrically insensitive. The only part of the mem
brane that produces an elastic restoring force is then
spherical segment closing the tip of the funnel; its total e
ergy is

W5
1

2
KS 2

RD 2

2pRh. ~A1!

-

FIG. 4. Electrically induced curvature of a membrane with
constraints.@From Eq.~15! multiplied by d, K(c11c2)d5 f Ed or,
2d/R5 f U/K#. The ordinate is in dimensionless units of 2d/R and
U5E d5100 mV. The ratiof /K is from Figs. 2 and 3 and the othe
parameters as per Fig. 2.

FIG. 5. Displacement@DR, Eq. ~A4!# of a membrane indented
with an AFM tip having a curvature radiusR5100 nm, as a func-
tion of membrane voltage~2100–100 mV! and ionic strength. The
outer partial charge per lipid was fixed atb i521; other parameters
as above.
5-4
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Taking the derivative with respect toh, one gets the force
resultant that opposes an increase ofh (h!H),

q5
dW

dh
5

4pK

R
. ~A2!

By increasing the tip load from 0 toq the curvature radius
will thus gradually decrease from̀ down to the AFM tip
radius R0 ~ca. 50 nm!. For K51310218 J this requires a
load of ;250 pN.

FIG. 6. Cross section of an indented membrane with a sphe
cap on a rod approximating an AFM tip.
02190
Furthermore, in the presence of a transmembrane fi
E5Um /d, the electrical enthalpy contains~to first order!,
the flexoelectric term22 f E/R which will modify the radius
with respect to the zero-field case. The energy balance
reads

q~h1Dh!5FK

2 S 2

R1DRD 2

2
2 f E

R1DRG2p~R1DR!

3~h1Dh!, ~A3!

where Dh5DR and R is the curvature in the absence
field. For weak fields (4p f E!q) this yields ~in view of
~A2!

DR

R
5

4p f E

q
5

R

d

f

K
Um . ~A4!

This predicts that the electromotility response decrea
with the mean applied force because the membrane ben
becomes energetically costly at small radii. This prope
may help to distinguish effects due to membrane torque fr
that due to membrane tension.
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